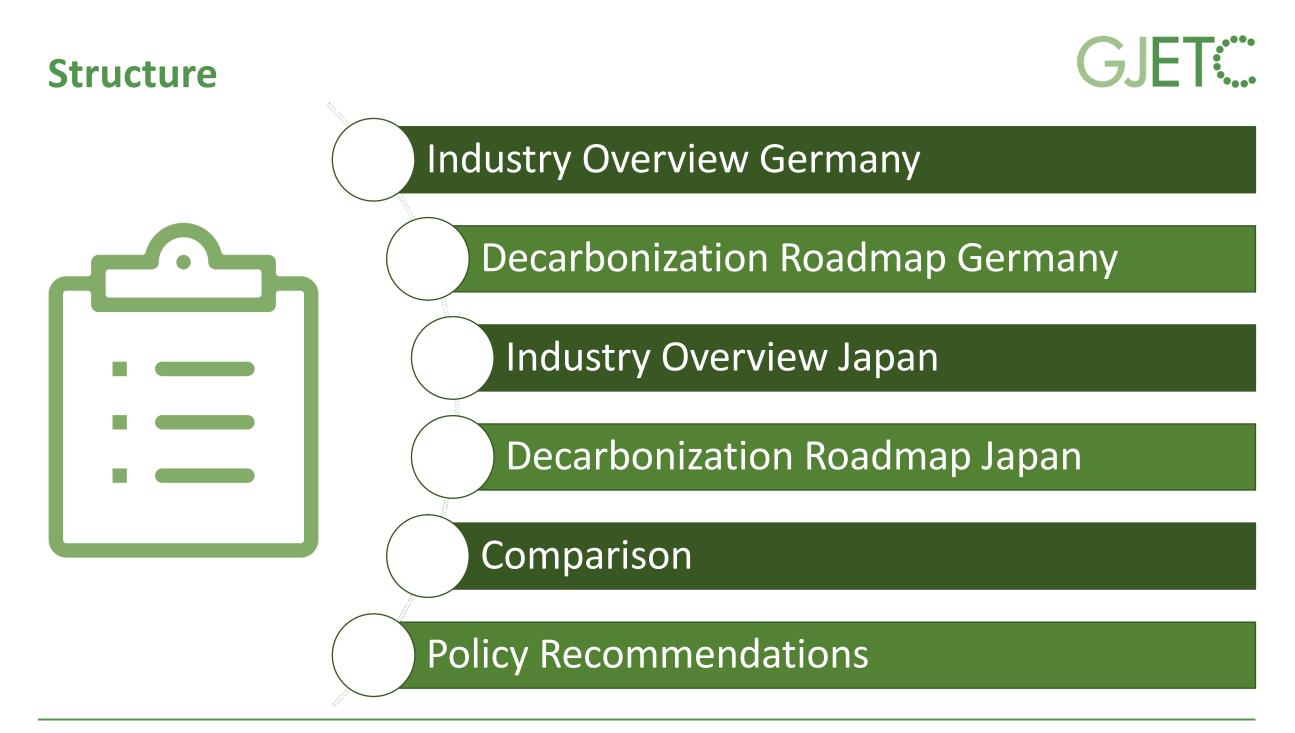
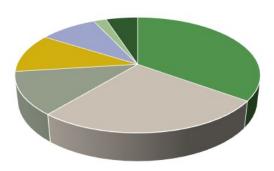
9th November 2022


Thomas Adisorn

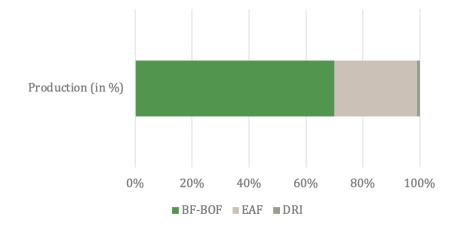
Wuppertal Institute (WI)

Yoshikazu Kobayashi

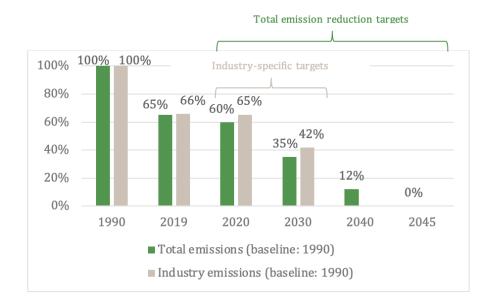
Institute of Energy Economics Japan (IEEJ)

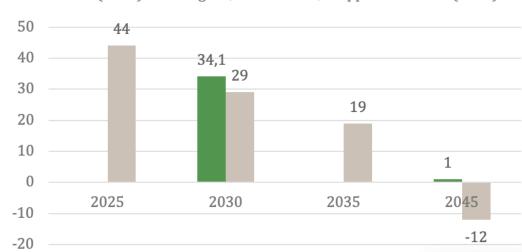

Decarbonization of the Steel Industry

Industry Overview: Germany

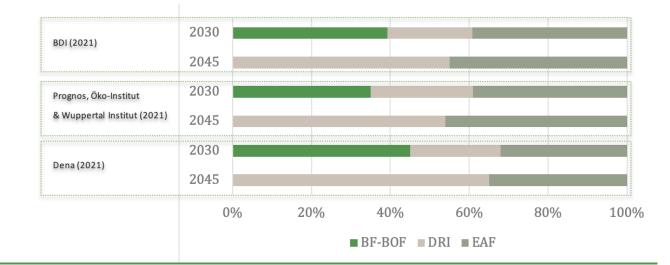


- Construction
- Metalls
- Pipes


Other

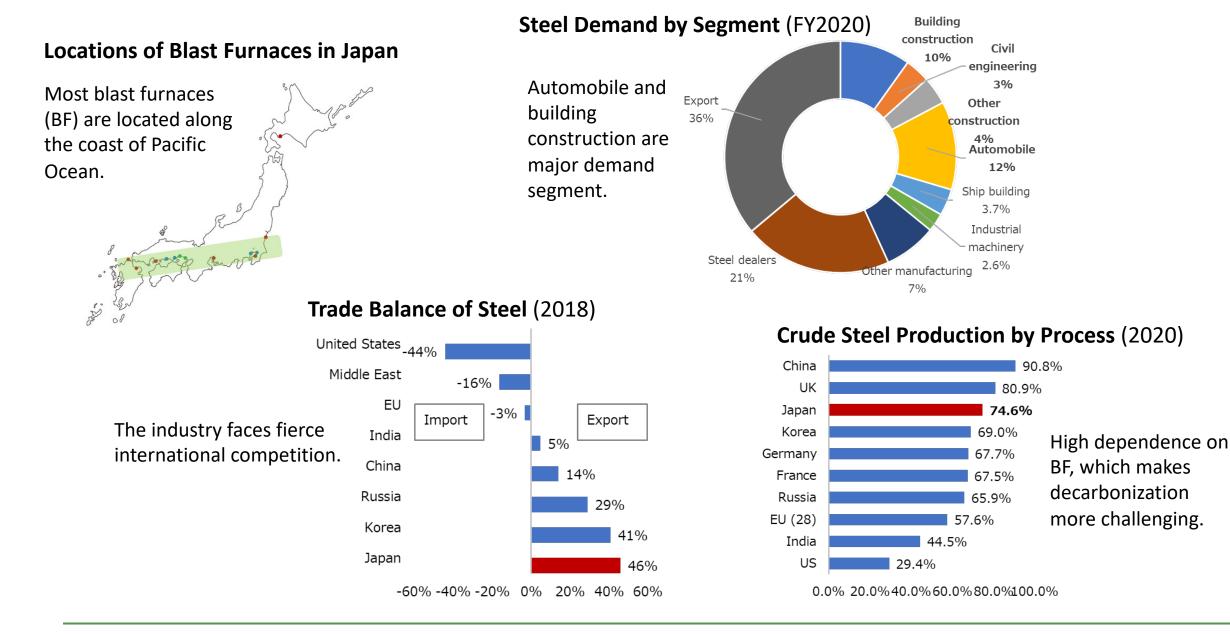

- Automobile
- Machinery
- Household appliances

Decarbonization Roadmap: Germany



dena (2021) Prognos, Öko-Institut, Wuppertal Institut (2021)

Key Technology Pathways


 Increase of EAF route

- DRI with NG used in the transition phase before turning to 100% hydrogen
- CCU(S) with bioenergy

Industry Overview: Japan

Decarbonization Roadmap: Japan

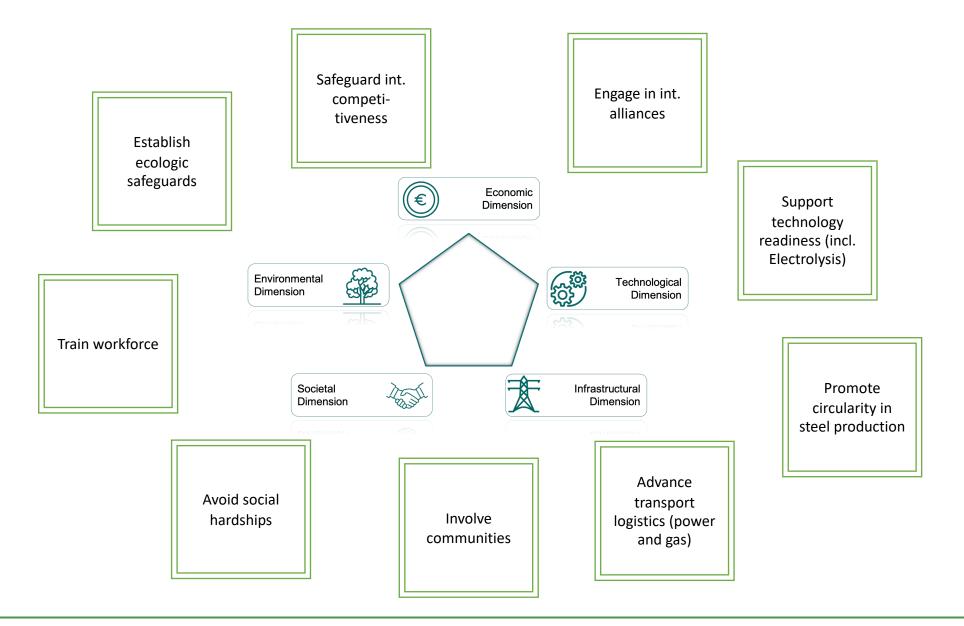
- Utilization of hydrogen and CCUS are the two major means to decarbonize blast furnace. Electrification based on zeroemissions power is also pursued.
- While public-private partnership (COURSE50) plays a pivotal role, each steel maker sets its own mid-year targets with specific reduction technology developments.

Road	map Toward C	2020	2030	2040	2050	2100	
Development of technologies specific to iron & steel sector	COURSE50	Raising ratio of H2 reduction in blast furnace using internal H2 (COG) Capturing CO2 from blast furnace gas for storage	R&D	Imp	lementation		
	Super COURSE50	Further H2 reduction in blast furnace by adding H2 from outside (assuming massive carbon-free H2 supply becomes available)		R&D	Imple	mentation	
	H2 reduction iron making	H2 reduction iron making without using coal		R&	.D	Impleme	ntation
	ССИ	Carbon recycling from byproduct gases		R&D	li	nplementation	
	CCS	Recovery of CO2 from byproduct gases.	R&D		Implem	entation	
Development of common fundamental technologies for society	Carbon-free Power	Carbon-free power sources (nuclear, renewables, fossil+CCS Advanced transmission, power storage, etc.	R&D			Implementatio	on
	Carbon-free H2	Technical development of low cost and massive amount of hydrogen production, transfer and storage	R&I		Imp	lementation	
	CCS/CCU	Technical development on CO2 capture and strage/usage Solving social issues (location, PA, etc.)	R&I		Imp	lementation	
					1		

Comparison

Decarbonization actions of both countries' steel industry have a lot in common; but there are also nuanced differences:

Commonalities	Differences
 All major companies have mid-term (2030) targets and aim for long-term full decarbonization. Utilization of hydrogen as fuel Direct reduction by hydrogen Carbon, capture, utilization, and storage (CCUS) Biomass as fuel Electrification (raising the share of electric arc furnace) 	 Public-Private Partnership program (J) Assumed products by CCU application Chemical products (G) vs Methane (J) Direct reduction by natural gas (G) Bio energy carbon capture and storage with oxyfuel (G) Utilization of ferro coke (J) Major sources of hydrogen More weight on the domestic green H2 (G) vs both green and blue H2 (J) Major sources of zero emissions electricity Renewable (G) vs various zero-emission generation sources incl. renewable, nuclear, and hydrogen/ammonia (J)



DRI-technology offers a good compromise due to its potential to reduce emissions almost completely.

Technology	Abatement costs (2030)	Abatement costs (2050)	Additional costs (2050)	Expected applicability
Direct reduction	60-99 EUR / t CO2	85-144 EUR / t CO2	36-61%	2025-2030
CCU	231-439 EUR / t CO2	178-379 EUR / t CO2	63-119%	2025-2030
HIsarna / CCS	n.a.	25-45 EUR / t CO2	9-16%	2035-2040
Iron electrolysis	n.a.	170-292 EUR / t CO2	65-112%	2050

Policy recommendations: Germany

Policy Recommendations: Japan

ltem	Policy
Cost-competitive clean hydrogen	 R&D supports for more competitive electrolysis process Development of import clean hydrogen/ammonia hub Infrastructure development of the domestic hydrogen supply network
Innovative steel-making technology	 Intensive R&D support at an earlier stage More weight on the pilot testing and commercialization at a later stage
CCUS application	 Legal and regulatory development to operationalize CCS Diplomacy to secure overseas storage location
Zero emissions electricity	 Realization of power generation mix as of 2030 and expected reference figures as of 2050
Financing	 Completion and refinement of the industrial decarbonization roadmap for transition finance
Market acceptability of zero- carbon steel	 Burden sharing mechanism of incremental cost across the entire supply chain